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Abstract— This paper deals with the problem of reducing 

fuel consumption and pollutant emissions of Heavy Duty 

Vehicles (HDVs). The overall objective of improving the 

efficiency of the HDVs can be obtained by employing additional 

information about road topography, altitude or slope, traffic 

and weather conditions. To this aim, a cloud computing 

architecture is proposed to support the fleet companies to 

manage the HDV route planning. The cloud system receives the 

transport mission data (departure, destination, waypoints, 

maximum mission duration time, etc.) and calculates the best 

eco route and the optimal velocity profiles minimizing fuel 

consumptions by a cloud-based optimizer. The optimization is 

performed taking into account not only road topography (2D 

maps and altitude) but also other sources of heterogeneous data 

such as traffic and weather conditions. Some case studies show 

the efficiency (fuel consumption savings and travel times) of the 

proposed smart technology. 

Keywords— Eco-routing; intelligent route selection; heavy 

duty vehicles emission savings. 

I.  INTRODUCTION  

The impact of road traffic on energy efficiency is a major 
global policy concern and has inspired a substantial body of 
innovation aimed at improving vehicle and traffic 
management technologies. Many of the current decisions to 
reduce energy consumptions and emissions of air pollutants 
worked on light-duty vehicles but are not feasible for Heavy 
Duty Vehicles (HDVs) applications. In the recent years the 
automotive industry has made a substantial effort in 
developing power train technologies to improve fuel 
efficiency on HDVs. 

Due to the increasing of the road freight traffic, projections 
indicate that total HDV energy use and CO2 emissions are 
expected to remain stable at the current level over the long 
term, whether no policy action is taken. This is clearly 
incompatible with the goal of reducing greenhouse gas 
emissions from transport by around 60% below 1990 levels 
by 2050. Hence, reduction of fuel consumption and emissions 
of air pollutants is an important required challenge for HDV. 

In real transport missions, many optimization possibilities 
based on the most advanced technologies in powertrain 
control and intelligent transportation systems can be 
employed for balancing fuel efficiency and emissions 
reduction [1]. The research in this area studies four main 
aspects that may contribute for the HDV fuel reduction: driver 
behaviour, road density evaluation, route planning and speed 
control. 

In this paper the route planning issue is mainly treated. 
Usually, the route planning objective is to find the optimal 
route to follow by minimizing the route distance or the travel 
duration time. This paper aims to determine an optimal route 
and the velocity profiles that minimize the HDV fuel 
consumption. Moreover, a novel cloud computing system 
based on optimization and control strategies is proposed that 
can integrate different data and information: predictive traffic 
and weather conditions, 2D road topography, altitude and 
curvatures, information about transport mission such as 
vehicle payload, vehicle configuration, etc. Several road data 
can be obtained by databases and external data services [2], 
[3] that can provide information about the current state of 
traffic, road works, weather or state of roads. 

In the related literature several studies address the question 
of reducing fuel consumption or emissions. Gang et al. [4] use 
an improved genetic algorithm to solve the vehicle routing 
problem in a fuel-efficient way. In addition, Kuo [5] proposes 
a simulated annealing algorithm finding the vehicle routing 
with the lowest total fuel consumption taking in account HDV 
payloads. The payload problem associated with the fuel 
consumption is also considered by [6] and [7] that try to 
deliver as soon as possible the heaviest loads while satisfying 
storage constraints, fragility issues and priority policies. 
Finally, Yao et al. [8] propose a study that aims to find a 
solution to time-dependent vehicle routing problem with time 
windows by minimising fuel consumption. An ant colony 
algorithm is presented to solve the problem and the 
optimization of the departure time is introduced. However, the 
above cited studies do not consider data provided by the 
external data services, such as traffic conditions and weather 
forecast. Shahzada and Askar [9] describe a navigation system 
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for mobile phones, which optimizes vehicle routing using road 
and traffic conditions and GPS coordinates. However, the 
authors minimize the duration time of the transport route. 

Unlike the previous papers, our objective is offering a 
cloud platform for the fleet management companies to 
optimize the HDV routes by employing additional 
information as road topography, altitude or slope, traffic and 
weather conditions. Such cloud computing system not only 
minimizes the fuel consumptions or other important 
emissions, but improves the route planning avoiding 
incidents, bad weather conditions or slowdowns. Moreover, 
the cloud structure can be used by HDV on-board systems to 
calibrate engine and power train parameters on the basis of the 
choice of the optimal route and velocity profiles. In order to 
calculate the velocity profiles, the cloud system uses an 
optimization model proposed by Hellström et al. [10] but 
extends it, considering not only slope information but also 
curvature, traffic and weather conditions. 

Summing up, the proposed cloud computing system is 
composed by: i) a Data Management Architecture devoted to 
data storage and data integration/fusion; ii) a Cloud Optimizer 
that finds the HDV optimal route and calculates velocity 
profiles to follow. 

The remainder of this paper is organised as follows. In 
Section II the whole system architecture is presented, while 
Section 3 describes in detail the data management 
architecture. Moreover, Section 4 introduces the Cloud 
Optimizer and its sub-components. Finally, in Section 5 some 
case studies show the efficiency of the proposed system and 
Section 6 draws the conclusions and future works. 

II. SYSTEM ARCHITECTURE 

The system architecture presented in this work consists of 
a set of software components distributed in two different 
optimization modules that work in a coordinated fashion 
under the name of Global Optimizer (Fig. 1): the Cloud 
Computing Optimizer and the On-board Optimizer. 

This paper focuses on the functionalities of the Cloud 
Computing Optimizer, which performs the route planning 
optimization task in a cloud-based environment. In the cloud 
system data from external sources (i.e., traffic, weather, maps 
and topography), mission related data (i.e., waypoints, 
payload, driver) and real-time data provided by the truck on-
board system (i.e., position, speed, consumption, 
environmental sensors) are ingested and processed. 

Cloud computing [11] is a model which enables on-
demand access to a shared resource pool through the network. 
These highly configurable resources can be easily accessed 
and released, on a dynamic basis, with a minimum 
management effort and a limited interaction with the service 
provider. 

Cloud computing solutions came with characteristics 

of high availability, scalability and performances [12] 

representing a very profitable opportunity for industrial sector 

and allowing to reduce effort, time and costs of development, 

distribution and management. Furthermore, the use of services 

and infrastructures provided by third party, let SME to make 

their investment which a level of flexibility e to rapidly adapt 

to market’s evolutions and business opportunities. Cloud 

computing solutions are usually classified in three service 

models [13], as reported in Fig. 2: 

 

• Infrastructure as a Service (IaaS): the service 
provider delivers the complete framework of servers, 
routers, storage, hardware and virtualization software; 
the user is responsible of operating system, 
middleware, runtime and applications. 

• Platform as a Service (PaaS): the service provider 
delivers the whole hardware and software chain 
which includes networking and runtime 
functionalities; the user is responsible for data and 
application management. 

• Software as a Service (SaaS): the service provider 
delivers the whole service, including applications 
and data; the user just uses of service’s 
functionalities. 

 

 

Fig. 1. Global Optimizer 

 

 

Fig. 2. Cloud Computing Models 

The Cloud Computing Optimizer architecture (see 

Fig. 3) benefits of the PaaS model, resident on the Microsoft 

Azure public cloud, which gives the possibility to exploit 

existing building blocks and cloud applications flexibility. 

This platform consists of two main blocks:  

 

• the Data Management Architecture 

• the Cloud Optimizer. 

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 14th IEEE International Conference on Automation
Science and Engineering. Received March 14, 2018.



In the next Section III and IV, the functionalities of 

these two system components will be explicated and their 

roles in the scope of the overall solution will be detailed. 

 

 

Fig. 3. Cloud Computing System 

III. DATA MANAGEMENT ARCHITECTURE 

The system architecture here described is structured to 
work with big datasets coming from external sources and in 
real-time from the trucks. These data are large and 
heterogeneous sets characterized by what in the Big Data 
domain is called the “3 Vs Model” [14, 15]: Volume 
(Gigabyte per data collection), Velocity (number of data 
collection systems and products around the world) and Variety 
(different formats). The main components forming the data 
management architecture are: 

• The Data Storage components, to collect all the raw 
data from external sources and trucks; 

• The Business Logic component, to ingest, integrate 
and fuse the datasets. 

A. Data Storage 

The Data Storage is the repository that collects the vast 
amount of raw data in native format (structured, un-structured, 
semi-structured) coming from the external data sources and 
the trucks. It is divided in two main sub-components: 

a) The Services Data Storage (SDS), which is 

responsible for the storage of data from external sources and 

mission data. This is a shared area across different modules 

that store raw (not processed) system information coming 

from different data sources, such as ADAS data, traffic 

forecasting data, weather forecasting data, mission and truck 

data. Such data are stored into the database in order to help 

the system to plan the best route, perform useful evaluation a 

posteriori, assess the mission performance and demonstrate 

to external users (e.g. authorities) the effectiveness of the 

system. 

b) The Planning Data Storage (PDS), responsible for 

the storage of the computed best routes data and data from 

the truck. This is a shared area across different modules, 

which store information, including best routes calculated by 

the system and truck on-board data received from the On-

board system. 

Both the sub-components operate on-line, supported by 
the Business Logic components, and offline in case of big data 
stored and need for analytical processing. 

B. Business Logic 

The Business Logic component operates several different 
types of operations on data from external sources such as 
ingestion, cleaning, transformation, processing, fusion and 
integration. This component includes two main sub-
components: 

a) the Service Data Manager (SDM), which has the 

objective to retrieve data from external services, then to store 

them to the Data Storage components in order to guarantee to 

have always the most recent data available; 

b) the Planning Data Manager (PDM), which is the 

principal interface regarding both the flow of structured 

planning data and the communication as data transferred with 

the on-board system. The main functionality of this sub-

component is the Data Fusion, which performs the Extract, 

Transform and Load process that is responsible for extract the 

relevant data from the source transform it to the required 

formats and then load the data into a data staging area. 

IV. CLOUD OPTIMIZER 

In this section the role and the structure of the second block 
of the Cloud Computing system (i.e., the Cloud Optimizer) is 
described. The aim of the Cloud Optimizer component is to 
determine the optimal route that an HDV has to follow, in 
order to reach its destination minimizing the fuel consumption 
and optimizing the route velocity profiles. The Cloud 
Optimizer component calculates the “best route” considering 
all relevant criteria for an efficient truck routing, such as 
weather forecast, traffic conditions, fuel consumption and 
emissions of air pollutants, road slopes, load factor. To this 
aim, the Cloud Optimizer is connected to the PDM which 
provides the transport mission data including the information 
of the External Data Services. More in detail, the transport 
mission data are released by the Fleet Management Company, 
transmitted from the Mission Dashboard component to the 
SDM and stored to the data storage components. These data 
include truck departure, destination and waypoints, maximum 
mission duration time and load factor. Moreover, weather 
forecast, traffic conditions as well as 2D topography and 
altitude are provided to the cloud system by the External Data 
Services. The Cloud Optimizer and the PDM components 
exchange information when the Fleet Management Company 
creates a new mission.  

The operational scenario or sequence of events that occur 
in the use of the Cloud Optimizer can be described through a 
general two phase’s scenario: i) Pre-mission phase; ii) In-
mission phase. In the Pre-mission phase, the system computes 
the best route, optimizes the velocity profiles and sends them 
to the truck driver before the mission begins. In the In-mission 
phase, the best route is monitored by real-time traffic data 
collection: if incidents or severe slowdowns occur, the Cloud 
Optimizer re-calculates the best route based on the truck GPS 
coordinates. The Cloud Optimizer is divided into two sub-
components: 

 

• Eco Route Planner (ERP); 

• Vehicle Longitudinal Model (VLM). 
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Each sub-component is devoted to performing the 

following specific actions: 

• The ERP performs two important tasks: 1) selecting 
a route network that links the transport departure, 
waypoints and destination; 2) determining the best 
route with minimum fuel consumption and the 
optimal velocity profiles. 

• The VLM calculates the fuel consumption and the 
respective emissions of air pollutants for each route 
of the network selected by the ERP. 

A. Eco-Route Planner 

In this section, a detailed description of the ERP in the Pre-
mission phase is presented. The ERP is activated by the PDM 
when a new transport mission is released by the fleet 
management company. The ERP receives by the PDM the 
truck departure, destination, waypoints and 2D Maps. Based 
on these data, the ERP selects the route network that will be 
used to determine the best route and monitor the transport 
mission. 

First, two routes are calculated: 

Route 1. the fastest route from the departure to 

destination by passing from the waypoints and 

respecting the mission duration time; 

Route 2. an alternative route that respects the 

constraint of the maximum arrival time. 

 
Second, the route network including all the possible routes 

connecting the origin to the destination is built by the 
following steps. 

 

Step 1. Starting from Route 1 the crossing roads are 

determined. 

Step 2. The alternative routes connecting each crossing 

road with the destination and not coinciding with Route 1 are 

selected. 

Step 3. If some alternative routes have a road portion in 

common, then only one of them is considered. 

 
After completing the three steps, the selected route 

network is obtained and can be described by a graph G(V,E), 
where V is the set of crossing roads and E is the set of the 
roads connecting them. At this point the first task of the ERP 
ends. 

Now, the selected route network has to be evaluated by the 
VLM. In other words, the VLM has to calculate the optimal 
velocity profiles by minimizing the fuel consumption and 
emissions for each road of the network on the basis of truck 
model, traffic and weather conditions, altitude and curvature 
(the next subsection will describe in detail the behaviour of 
the VLM). The output of the VLM, presented by the table of 
Fig. 4, allows associating the value of fuel consumption and 
emission of air pollutants to each street (edge) of the route 
network. 

Hence, a cost is associated to each edge of graph G(V,E). 
Such weighted graph represents the input for the second task 
of the ERP that determines the optimal route. 

 

Fig. 4. Table of fuel consumption in the route network 

Indeed, the ERP computes the path that minimizes the 
total cost represented by the fuel consumption and pollutant 
emissions. In the related literature, the Dijkstra or A* are 
efficient algorithms to perform the proposed optimization 
[16], [17]. Obviously, the best route is composed by a subset 
of the streets of the table shown in Fig. 4 and the optimal 
velocity profiles are in the last table column. Finally, the best 
route and the optimal velocity profile are sent to the PDM that 
transmits them to the truck driver. 

The In-Mission phase becomes essential when the truck 
begins its transport mission: the traffic and weather conditions 
of the route network and, in particular, of the best route are 
constantly monitored. If necessary, the calculation procedure 
for the best route is activated again. However, the new mission 
departure is represented by the GPS coordinates provided by 
sensors equipped on the truck. In particular, when a new 
calculation procedure is activated, the PDM start to exchange 
data with the Cloud Optimizer. The GPS coordinates of the 
truck and the information about incidents, congestion 
durations, bad weather conditions derived respectively by 
truck sensors and External Data Services are the new main 
data that the ERP and the VLM will analyse in order to 
calculate the best route and the new velocity profiles. 

B. Vehicle Longitudinal Model 

Once the ERP determines the route network, estimated 
values about emissions of air pollutants and fuel consumption 
are necessary. The VLM mostly uses the truck longitudinal 
model introduced by Hellström et al. [10]. Such model 
optimizes the velocity trajectory with respect to a criterion 
formulation that weighs trip time and fuel consumption. 

More in detail, the street is divided in sections, each 
section is discretized in n intervals of length h. The generic 
interval k with k=1,...,n is modeled as follows: 

 

(𝑣𝑘+1− 𝑣𝑘)

ℎ
=

1

𝑣𝑘
 

1

𝐽𝑙+𝑚𝑟𝑤
2 + 𝜂(𝑔)𝑖(𝑔)2𝐽𝑒

 (𝑖(𝑔)𝜂(𝑔)𝑇𝑒(𝑣𝑘 , 𝑢𝑓) +

−𝑇𝑏(𝑢𝑏) − 𝑟𝑤 (𝐹𝑎(𝑣𝑘) +  𝐹𝑟(𝑠) + 𝐹𝑔(𝑠)))                                (1)  

 

where the used parameters and variables are the following: 

 

(𝑣𝑘+1 −  𝑣𝑘) speed variation between interval k+1 and k 

𝐽𝑙  wheel inertia 

𝑟𝑤 wheel radius 

𝑚 truck mass 

𝜂(𝑔) gear efficiency 
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𝑖(𝑔) conversion ratio the transmission 

𝐽𝑒 engine inertia 

𝑇𝑒 engine torque 

𝑇𝑏  brake torque 

𝐹𝑎 air drag force 

𝐹𝑟 rolling resistance force 

𝐹𝑔 gravitational force 

𝑢𝑓 fueling level 

𝑢𝑏 braking rate 

s  slope 
 

In the model the state vector is 𝑥𝑘 = [𝑣𝑘   𝑔]𝑇, where 𝑣𝑘 is 
current speed and 𝑔 is the engaged gear. Moreover, the control 
vector is denoted by 𝑢𝑘 = [𝑢𝑓 𝑢𝑏]. The fueling level is 

assumed to be bounded by the relation 0 ≤ 𝑢𝑓 ≤ 𝑢𝑓,𝑚𝑎𝑥(𝜔𝑒), 
where 𝜔𝑒 is the engine speed (rad/s). 

The vehicle velocity is bounded inside the interval 𝑣𝑚𝑖𝑛 ≤
𝑣𝑘 ≤ 𝑣𝑚𝑎𝑥 , where 𝑣𝑚𝑎𝑥 is the maximum possible velocity 
taking into account traffic condition, weather conditions and 
road topography (curvature and slopes). 

The objective is minimizing the energy and time required 
for a given transport mission. The fundamental trade off when 
studying minimization of energy required for a transport 
mission is between the fuel use and the trip time. The fuel use 
on a trip from 𝑆 = 𝑆0 to 𝑆 = 𝑆𝑓 is denoted by M and is 

calculated as follows: 

            𝑀 = ∫
𝑛𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

2𝜋𝑛𝑟𝑟𝑤

𝑣𝑢𝑓, 
𝑆𝑓

𝑆0

𝑔 ≠ 0                         (2) 

where 𝑛𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟  is the number of cylinders and 𝑛𝑟 is the 

number of the crankshaft revolutions per cycle. On the 
contrary, the trip time is denoted by T and is defined by the 
following relation: 

                       𝑇 = ∫
𝑑𝑆

𝑣

𝑆𝑓

𝑆0

                                               (3)

The cost function is evaluated as follows [10]: 

                       𝐶𝑜𝑠𝑡 =  𝑀 +  𝛽𝑇                                    (4)

where β is a scalar factor which can be tuned to receive the 
desired trade off respecting the mission duration time. 

Now, it is possible to generate (considering admissible 
velocities and gears for a truck) all the possible 𝑚𝑘 states 𝑥𝑘,𝑗 

in a generic interval k with k=1,…,n and j=1,…, 𝑚𝑘, and 
calculate the value of 𝑢𝑓  to pass from a state 𝑥𝑘,𝑗 to the next 

one 𝑥𝑘+1,𝑖.with i=1,…, 𝑚𝑘+1. We perform different trials to 

find the optimal distance h and evaluate the number of k points 
that are necessary to have good results. In our case we 
consider h=2 km. 

Fig. 5 shows how the algorithm works: i) it is taken in 
account a route divided in n intervals of length 2 km; ii) each 
interval k is divided in 𝑚𝑘 states 𝑥𝑘,𝑗. In addition, each 𝑥𝑘,𝑗 

state is linked to all the following ones 𝑥𝑘+1,𝑖 with i= 

1,…,𝑚𝑘+1 by a weighted edge 𝑢𝑘 𝑖,𝑗 (see Fig. 6) that represent 

the fuel consumption to perform the step k, k+1. 

Once calculated all the states and the weights, the Dijkstra 
algorithm [18] determine the minimum path of the graph 
represented in Fig. 5: in this way the algorithm chooses the 
optimal velocities and the corresponding gears in each interval 
k that minimize the total cost (represented by the fuel 
consumption) for a section of length h. Repeating the same 
approach for all the sections of 2 km in a street, the velocity 
profiles and the corresponding gears for the whole street are 
obtained and reported in the table shown in Fig. 4. 

 

Fig. 5. Look ahead steps scheme 

 

Fig. 6. Fuel consumption cost associated to look ahead scheme 

V. CASE CTUDY AND RESULTS 

This section presents some transport missions of different 
length in order to show how the proposed Cloud computing 
system is able to select the optimal routes from the emission 
point of view, by respecting the requested arrival times. To 
this aim we enlighten the differences between the fastest 
possible routes and the selected roads minimizing fuel 
consumption. Different tests based on three transport missions 
in Europe are considered: 

A. Bari – Santeramo (Short range) 

B. Bari – Pescara (Medium range) 

C. Rimini(Italy) – Vienna(Austria) (Long range) 

 
The performed tests are implemented by the External Data 

Services provided by PTV – xRoute [19] and GFS Model [20]. 

A. Short range case study description 

The first mission loaded on PDM by fleet management 
company is Bari–Santeramo, two cities in the south of Italy. 
The maximum mission duration time established by the 
company is 1 hour and the payload is equal to 40 tons. The 
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mission data are thus sent to the ERP that has to select the 
route network. In particular, the ERP initially calculates the 
fastest route (Route 1) and its sustainable alternative by PTV 
– xRoute [19]. Successively, the ERP builds the route network 
shown in Fig. 7. 

 

 

Fig. 7. Route Network: Bari – Santeramo 

The Route Network is thus sent to the VLM that calculates 
the fuel consumption, the air pollutants emissions and velocity 
profiles optimized taking in account traffic and weather 
conditions (provided by the External Data Service).  

The fuel consumption is the parameter chosen to perform 
the optimization, hence the fuel consumption weighted cost is 
assigned to every edge of the Pre-calculated graph. This graph 
is sent to the ERP that generates the Eco- Route. In Fig. 8 the 
results are shown (Eco Route in green and fastest route in red) 
and in Table I a comparison between the fastest route and the 
Eco Route is reported. 

The results confirm that the algorithm works correctly, 
while remaining within the time limits imposed by the fleet 
management company. It is possible to save the 8% of fuel. 

 

Fig. 8. Eco Route (green) and Fastest route (red): Bari – Santeramo 

 

Comparison between eco route and fastest route:  

Bari - Santeramo 

Distance [km] Fuel consumption [kg] Duration [min] 

Fastest 

Route 

57,9 13,83 52 

Eco 
Route 

43,6 12,72 55 

TABLE I 

B. Medium range case study description 

The second mission loaded on PDM by fleet management 
company is Bari–Pescara. The maximum duration time 
requested by the feet company is 3 hours and 30 minutes while 
the payload is equal to 40 tons. 

For this mission the architecture is programmed to 
perform the optimization taking in account the CO2 emissions 
and also in this case results are promising. The route network 
is shown in Fig. 9. 

 

Fig. 9. Route Network: Bari – Pescara 

The generated eco route and the fastest route are shown in 
Fig.10 and in Table II the comparison is reported. 

 

Fig. 10. Fastest Route (red) and Eco-Route (green):Bari – Pescara 

 

Comparison between eco route and fastest route:  

Bari – Pescara 

Distance [km] CO2  emissions [kg] 
Duration 

[h:mm] 

Fastest 

Route 

315 202,18 3:03 

Eco 

Route 
305 197,94 3:05 

TABLE II. 

 

C. Long range case study description 

The third mission loaded on PDM by fleet management 
company is Rimini (Italy) – Vienna(Austria). The maximum 
duration time requested by the feet company is 9 hours and 30 
minutes while the payload is equal to 40 tons. 

The optimization is done taking in account the CO2 
emissions. The route network in shown in Fig.11. The 
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generated eco route and the fastest route are shown in Fig.12 
and the comparison is reported in Table III. It is apparent that 
also in this case the CO2 emission is reduced of about 5%. 

 

Fig. 11. Route Network: Rimini-Vienna 

 

Fig. 12. Eco – Route (green) and Fastest Route (red): Rimini - Vienna 

 

Comparison between eco route and fastest route:  

Rimini - Vienna 

Distance [km] CO2 emission [kg] 
Duration 

[h:mm] 

Fastest 

Route 

833 591,04 8:31 

Eco 
Route 

788 559,53 9:02 

TABLE III. 

VI. CONCLUSIONS 

This paper presents a Cloud Computing System to support 
the fleet management company in the choice of the routes to 
be performed by Heavy Duty Vehicles (HDV). In particular, 
the Cloud Computing System determines the best route and 
the optimal velocity profiles that an HDV has to run in order 
to minimize fuel consumptions and/or emissions of air 
pollutants. The optimization procedure is performed by the 
Cloud Optimizer that outputs the best route and the optimal 
velocity profiles on the basis of information provided by the 
fleet management company and external data services. 
Finally, some case studies show the efficiency of the proposed 
architecture, comparing the fastest routes and regular velocity 
profiles with the best route and the optimal velocity profiles 
determined by the Cloud Optimizer. The results show that in 
all the considered cases of different route lengths there is a 
saving of the fuel consumption or CO2 emission. 

Future works will consider an on-board system that will 
collaborate with the cloud computing system to improve the 
efficiency of the proposed architecture. Indeed, the on-board 
system could improve the truck powertrain parameters based 
on the best route and obtain an additional reduction of fuel 
consumption. 
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